

High end computing for nuclear reactor simulations with STAR-CD

Simon Lo

23 February 2006

High end computing for Light Water Reactors

Small PWR Core Configuration

- 3½ million flat flux regions in DeCART (1/4 core)
- 64 million cells in STAR-CD (1/8 core)
- ANL Beowulf cluster jazz:
 - 12 processors for DeCART
 - 57 processors for STAR-CD
 - 1 processor for the external interface
- Steady-state calculations required ~11 hours (not optimized)

Coupling Mechanics: Interface design

Coupled Results: Temperature & Pin Power

Boiling two-phase flow

- Avdeev, Pekhterev & Bartolemei
 - Heat flux=1.2 MW/m2
 - Water flow rate=1500 kg/m2/s
 - Water sub-cooling=63 K

2 by 2 BWR channel model

2 by 2 channel - Water temperature and void

Complete fuel assembly

- ~1.5 M cells (coarse grid model)
- 10 by10 fuel assembly, water channel, can wall
- Boiling two-phase flow
- Linux cluster: 10 processors
- Steady-state calculations required
 ~1 day (not optimized)

Complete fuel assembly – 3.8 m (top)

Water temperature

Void distribution

Channels with spacer grid

- ~2.6 M cells (fine grid model)
- 2 channels with spacer
- Two-phase flow
- SUN: 8 processors with 900 MHz
- Steady-state calculations required ~1.5 days (not optimized)

Swirling flow and phase separation after spacer grid

Boiling conjugate heat transfer

Boiling conjugate heat transfer – Temperature profile

Gap

Cladding

Fluid

Numerical Reactor Elements and Participants

D-adapco

High end computing opportunity

- Opportunity: realistic physics in realistic geometry
 - Better resolution of geometry: multi-channels, spacer grids, whole core and beyond, ...

 More completed physics: multiphase flows, boiling, conjugate heat transfer, neutronics, water chemistry, crud deposition, structural

analysis, ...

High end computing requirement

- Requirement: high end software running in high end hardware
 - Hardware: massively parallel computers, high speed communications, large memory, ...

 Software: models for coupled physics, solution algorithms robust to cope with coupled physics, efficient to utilise massively parallel

computers.

